1. 面试题目 #
在构建基于大型语言模型(LLM)的对话系统时,如何有效处理过长的对话上下文(Long Context)问题?请详细阐述至少五种主流的处理策略,并对每种策略的核心原理、实现方法、优缺点以及典型适用场景进行深入分析。同时,请结合实际项目经验,说明如何根据具体需求选择和组合这些策略。
2. 参考答案 #
2.1 引言 #
在大型语言模型(LLM)驱动的对话系统中,对话上下文的长度是一个关键挑战。随着对话轮次的增加,上下文可能会超出模型的输入限制,导致信息丢失或推理能力下降。有效处理过长的对话上下文是构建高效、连贯对话系统的基础。本文将详细阐述几种主流的处理策略。
2.2 主流的对话上下文处理策略 #
2.2.1 截断 (Truncation) #
核心原理: 直接保留对话中最近的一部分内容,而丢弃较早的内容。这种方法基于假设,即最近的对话内容与当前回复的相关性最高。
实现方法: 设置一个固定的上下文长度限制(例如,最大Token数或消息条数)。当对话超出此限制时,从对话的开头部分开始删除旧消息,直到满足长度要求。
def truncate_context(dialogue_history, max_tokens=4000):
"""截断对话上下文"""
# 计算当前上下文长度
current_tokens = sum(len(turn['content'].split()) for turn in dialogue_history)
if current_tokens <= max_tokens:
return dialogue_history
# 从最新内容开始保留
truncated_history = []
token_count = 0
for turn in reversed(dialogue_history):
turn_tokens = len(turn['content'].split())
if token_count + turn_tokens <= max_tokens:
truncated_history.insert(0, turn)
token_count += turn_tokens
else:
break
return truncated_history
def smart_truncation(dialogue_history, max_tokens=4000, keep_important=True):
"""智能截断:保留重要信息"""
if not keep_important:
return truncate_context(dialogue_history, max_tokens)
# 识别重要对话轮次
important_turns = identify_important_turns(dialogue_history)
# 优先保留重要轮次
truncated_history = []
token_count = 0
# 先添加重要轮次
for turn in important_turns:
turn_tokens = len(turn['content'].split())
if token_count + turn_tokens <= max_tokens:
truncated_history.append(turn)
token_count += turn_tokens
# 再添加最近的轮次
for turn in reversed(dialogue_history):
if turn not in truncated_history:
turn_tokens = len(turn['content'].split())
if token_count + turn_tokens <= max_tokens:
truncated_history.append(turn)
token_count += turn_tokens
else:
break
return truncated_history
def identify_important_turns(dialogue_history):
"""识别重要对话轮次"""
important_turns = []
for turn in dialogue_history:
# 基于关键词识别重要内容
important_keywords = ['问题', '需求', '要求', '重要', '关键', '紧急']
if any(keyword in turn['content'] for keyword in important_keywords):
important_turns.append(turn)
# 基于长度识别重要内容
if len(turn['content']) > 100:
important_turns.append(turn)
# 基于用户标记识别重要内容
if turn.get('important', False):
important_turns.append(turn)
return important_turns优点: 实现简单,计算开销小,易于部署。
缺点: 可能会丢失早期但重要的上下文信息,导致对话连贯性受损,尤其是在需要回顾早期细节的场景中。
适用场景: 实时聊天机器人、在线客服系统等对实时性要求高,且近期对话相关性更强的场景。
2.2.2 摘要 (Summarization) #
核心原理: 通过生成对话摘要的方式,将冗长的上下文压缩成精炼的关键信息。这有助于在减少上下文长度的同时,尽可能保留对话的核心要点。
实现方法:
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
class DialogueSummarizer:
def __init__(self, model_name="facebook/bart-large-cnn"):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
def summarize_dialogue(self, dialogue_history, max_length=200):
"""生成对话摘要"""
# 将对话转换为文本
dialogue_text = self.format_dialogue_for_summarization(dialogue_history)
# 分词
inputs = self.tokenizer(
dialogue_text,
max_length=1024,
truncation=True,
return_tensors="pt"
)
# 生成摘要
with torch.no_grad():
summary_ids = self.model.generate(
inputs.input_ids,
max_length=max_length,
min_length=50,
length_penalty=2.0,
num_beams=4,
early_stopping=True
)
# 解码摘要
summary = self.tokenizer.decode(summary_ids[0], skip_special_tokens=True)
return summary
def format_dialogue_for_summarization(self, dialogue_history):
"""格式化对话用于摘要"""
formatted_text = ""
for turn in dialogue_history:
speaker = "用户" if turn['speaker'] == 'user' else "助手"
formatted_text += f"{speaker}: {turn['content']}\n"
return formatted_text
def hierarchical_summarization(dialogue_history, chunk_size=10):
"""分层摘要:先对对话块进行摘要,再对摘要进行摘要"""
summarizer = DialogueSummarizer()
# 将对话分成块
chunks = [dialogue_history[i:i+chunk_size]
for i in range(0, len(dialogue_history), chunk_size)]
# 对每个块进行摘要
chunk_summaries = []
for chunk in chunks:
summary = summarizer.summarize_dialogue(chunk)
chunk_summaries.append(summary)
# 对摘要进行再次摘要
final_summary = summarizer.summarize_dialogue([
{'speaker': 'system', 'content': summary}
for summary in chunk_summaries
])
return final_summary
def extractive_summarization(dialogue_history, top_k=5):
"""抽取式摘要:提取关键句子"""
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
# 提取所有句子
sentences = []
for turn in dialogue_history:
sentences.extend(turn['content'].split('。'))
# 计算TF-IDF
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(sentences)
# 计算句子重要性
sentence_scores = []
for i, sentence in enumerate(sentences):
# 计算与所有句子的相似度
similarities = cosine_similarity(tfidf_matrix[i:i+1], tfidf_matrix).flatten()
# 重要性 = 与所有句子的平均相似度
importance = np.mean(similarities)
sentence_scores.append((i, importance, sentence))
# 选择最重要的句子
sentence_scores.sort(key=lambda x: x[1], reverse=True)
top_sentences = [item[2] for item in sentence_scores[:top_k]]
return '。'.join(top_sentences)优点: 保留了对话的核心信息,有效减少上下文长度,同时维持了较高的信息密度。
缺点: 摘要过程本身需要额外的计算资源和时间;摘要质量依赖于模型能力,可能丢失细微信息或引入偏差。
适用场景: 文档生成、长文本分析、需要保留较多背景信息的对话系统,如会议纪要生成、长篇邮件总结。
2.2.3 窗口滑动 (Sliding Window) #
核心原理: 将整个对话上下文分割成多个固定大小的"窗口",每次只处理一个窗口的内容,并通过滑动窗口来维护上下文的连续性。窗口之间可以有重叠部分,以确保上下文的平滑过渡。
实现方法:
class SlidingWindowProcessor:
def __init__(self, window_size=10, overlap=2):
self.window_size = window_size
self.overlap = overlap
def process_dialogue(self, dialogue_history):
"""使用滑动窗口处理对话"""
if len(dialogue_history) <= self.window_size:
return dialogue_history
# 创建滑动窗口
windows = self.create_sliding_windows(dialogue_history)
# 处理每个窗口
processed_windows = []
for i, window in enumerate(windows):
processed_window = self.process_window(window, i)
processed_windows.append(processed_window)
# 合并处理结果
return self.merge_windows(processed_windows)
def create_sliding_windows(self, dialogue_history):
"""创建滑动窗口"""
windows = []
start = 0
while start < len(dialogue_history):
end = min(start + self.window_size, len(dialogue_history))
window = dialogue_history[start:end]
windows.append(window)
# 滑动窗口,考虑重叠
start += self.window_size - self.overlap
if end == len(dialogue_history):
break
return windows
def process_window(self, window, window_index):
"""处理单个窗口"""
# 这里可以应用各种处理策略
# 例如:摘要、嵌入、记忆存储等
processed_window = {
'window_index': window_index,
'turns': window,
'summary': self.summarize_window(window),
'embeddings': self.embed_window(window),
'key_info': self.extract_key_info(window)
}
return processed_window
def summarize_window(self, window):
"""对窗口进行摘要"""
summarizer = DialogueSummarizer()
return summarizer.summarize_dialogue(window)
def embed_window(self, window):
"""对窗口进行嵌入"""
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('all-MiniLM-L6-v2')
texts = [turn['content'] for turn in window]
embeddings = model.encode(texts)
return embeddings
def extract_key_info(self, window):
"""提取窗口关键信息"""
key_info = {
'topics': self.extract_topics(window),
'entities': self.extract_entities(window),
'sentiment': self.analyze_sentiment(window),
'intent': self.classify_intent(window)
}
return key_info
def merge_windows(self, processed_windows):
"""合并窗口处理结果"""
# 合并摘要
summaries = [window['summary'] for window in processed_windows]
merged_summary = ' '.join(summaries)
# 合并关键信息
merged_key_info = self.merge_key_info(processed_windows)
# 返回合并结果
return {
'summary': merged_summary,
'key_info': merged_key_info,
'window_count': len(processed_windows)
}
def merge_key_info(self, processed_windows):
"""合并关键信息"""
merged_info = {
'topics': set(),
'entities': set(),
'sentiments': [],
'intents': []
}
for window in processed_windows:
key_info = window['key_info']
merged_info['topics'].update(key_info['topics'])
merged_info['entities'].update(key_info['entities'])
merged_info['sentiments'].extend(key_info['sentiment'])
merged_info['intents'].extend(key_info['intent'])
return merged_info优点: 能够处理非常长的上下文,同时在一定程度上保证了上下文的连续性和完整性。
缺点: 窗口大小的选择是关键,过小可能丢失上下文,过大则增加计算负担;跨窗口的长期依赖可能难以捕捉。
适用场景: 长时间对话处理、会议记录分析等需要处理超长上下文,且对局部连贯性要求较高的场景。
2.2.4 嵌入向量 (Embedding Vectors) #
核心原理: 利用嵌入向量技术,将整个对话上下文转化为固定长度的数值向量表示,从而规避文本长度限制。这些向量能够捕捉文本的语义信息。
实现方法:
from sentence_transformers import SentenceTransformer
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
class EmbeddingBasedContextProcessor:
def __init__(self, model_name='all-MiniLM-L6-v2'):
self.model = SentenceTransformer(model_name)
self.context_embeddings = []
self.context_memory = []
def process_dialogue_context(self, dialogue_history):
"""使用嵌入向量处理对话上下文"""
# 为每个对话轮次生成嵌入
turn_embeddings = []
for turn in dialogue_history:
embedding = self.model.encode(turn['content'])
turn_embeddings.append({
'turn': turn,
'embedding': embedding,
'timestamp': turn.get('timestamp', '')
})
# 生成上下文嵌入
context_embedding = self.generate_context_embedding(turn_embeddings)
# 存储到记忆中
self.store_in_memory(turn_embeddings, context_embedding)
return {
'context_embedding': context_embedding,
'turn_embeddings': turn_embeddings,
'memory_size': len(self.context_memory)
}
def generate_context_embedding(self, turn_embeddings):
"""生成上下文嵌入"""
# 方法1:平均池化
avg_embedding = np.mean([te['embedding'] for te in turn_embeddings], axis=0)
# 方法2:加权平均(基于时间衰减)
weighted_embedding = self.weighted_average_embedding(turn_embeddings)
# 方法3:注意力机制
attention_embedding = self.attention_based_embedding(turn_embeddings)
return {
'average': avg_embedding,
'weighted': weighted_embedding,
'attention': attention_embedding
}
def weighted_average_embedding(self, turn_embeddings):
"""基于时间衰减的加权平均嵌入"""
weights = []
embeddings = []
for i, te in enumerate(turn_embeddings):
# 时间衰减权重:越近的对话权重越大
weight = np.exp(-0.1 * (len(turn_embeddings) - i - 1))
weights.append(weight)
embeddings.append(te['embedding'])
weights = np.array(weights)
weights = weights / np.sum(weights) # 归一化
weighted_embedding = np.average(embeddings, axis=0, weights=weights)
return weighted_embedding
def attention_based_embedding(self, turn_embeddings):
"""基于注意力机制的嵌入"""
embeddings = np.array([te['embedding'] for te in turn_embeddings])
# 计算注意力权重
attention_weights = self.compute_attention_weights(embeddings)
# 加权求和
attention_embedding = np.sum(embeddings * attention_weights.reshape(-1, 1), axis=0)
return attention_embedding
def compute_attention_weights(self, embeddings):
"""计算注意力权重"""
# 使用自注意力机制
similarity_matrix = cosine_similarity(embeddings)
# 计算每个嵌入的重要性
importance_scores = np.sum(similarity_matrix, axis=1)
# 归一化为注意力权重
attention_weights = importance_scores / np.sum(importance_scores)
return attention_weights
def store_in_memory(self, turn_embeddings, context_embedding):
"""存储到记忆中"""
memory_entry = {
'turn_embeddings': turn_embeddings,
'context_embedding': context_embedding,
'timestamp': turn_embeddings[-1]['timestamp'] if turn_embeddings else ''
}
self.context_memory.append(memory_entry)
# 限制记忆大小
if len(self.context_memory) > 100:
self.context_memory.pop(0)
def retrieve_relevant_context(self, query, top_k=5):
"""检索相关上下文"""
if not self.context_memory:
return []
# 对查询进行嵌入
query_embedding = self.model.encode(query)
# 计算与所有上下文的相似度
similarities = []
for memory in self.context_memory:
similarity = cosine_similarity(
query_embedding.reshape(1, -1),
memory['context_embedding']['average'].reshape(1, -1)
)[0][0]
similarities.append((memory, similarity))
# 排序并返回最相关的上下文
similarities.sort(key=lambda x: x[1], reverse=True)
return similarities[:top_k]
def semantic_search(self, query, dialogue_history):
"""语义搜索"""
# 为查询生成嵌入
query_embedding = self.model.encode(query)
# 为对话历史生成嵌入
dialogue_embeddings = []
for turn in dialogue_history:
embedding = self.model.encode(turn['content'])
dialogue_embeddings.append({
'turn': turn,
'embedding': embedding
})
# 计算相似度
similarities = []
for de in dialogue_embeddings:
similarity = cosine_similarity(
query_embedding.reshape(1, -1),
de['embedding'].reshape(1, -1)
)[0][0]
similarities.append((de['turn'], similarity))
# 返回最相似的结果
similarities.sort(key=lambda x: x[1], reverse=True)
return similarities优点: 将变长文本转化为固定长度表示,便于模型处理;能够捕捉文本的语义信息,实现高效的语义匹配。
缺点: 向量表示可能丢失文本的细粒度信息和语序结构;聚合方式会影响信息保留程度,可能无法完全保留所有细节。
适用场景: 意图识别、情感分析、主题分类等需要对上下文进行全局理解,而非细致文本分析的任务。
2.2.5 记忆网络 (Memory Networks) #
核心原理: 通过专门的记忆机制存储和管理重要的上下文信息,并根据需要适时地提取和使用这些信息。这是一种更智能、更动态的上下文管理方式。
实现方法:
import torch
import torch.nn as nn
import torch.nn.functional as F
class MemoryNetwork(nn.Module):
def __init__(self, input_dim, memory_dim, num_memories=100):
super(MemoryNetwork, self).__init__()
self.input_dim = input_dim
self.memory_dim = memory_dim
self.num_memories = num_memories
# 输入编码器
self.input_encoder = nn.Linear(input_dim, memory_dim)
# 记忆存储
self.memory = nn.Parameter(torch.randn(num_memories, memory_dim))
# 注意力机制
self.attention = nn.MultiheadAttention(memory_dim, num_heads=8)
# 输出解码器
self.output_decoder = nn.Linear(memory_dim, input_dim)
def forward(self, input_sequence):
"""前向传播"""
# 编码输入序列
encoded_input = self.input_encoder(input_sequence)
# 计算注意力权重
attention_output, attention_weights = self.attention(
encoded_input, self.memory.unsqueeze(0), self.memory.unsqueeze(0)
)
# 生成输出
output = self.output_decoder(attention_output)
return output, attention_weights
def update_memory(self, new_information, importance_scores):
"""更新记忆"""
# 计算更新权重
update_weights = F.softmax(importance_scores, dim=-1)
# 更新记忆
memory_update = torch.matmul(update_weights, new_information)
self.memory.data = 0.9 * self.memory.data + 0.1 * memory_update
class DialogueMemoryManager:
def __init__(self, model_name='all-MiniLM-L6-v2'):
self.embedding_model = SentenceTransformer(model_name)
self.memory_network = MemoryNetwork(
input_dim=384, # all-MiniLM-L6-v2的维度
memory_dim=256,
num_memories=100
)
self.memory_store = []
self.importance_threshold = 0.5
def process_dialogue_turn(self, turn):
"""处理对话轮次"""
# 生成嵌入
embedding = self.embedding_model.encode(turn['content'])
# 计算重要性
importance = self.calculate_importance(turn, embedding)
# 存储到记忆
if importance > self.importance_threshold:
self.store_in_memory(turn, embedding, importance)
# 更新记忆网络
self.update_memory_network(embedding, importance)
return {
'embedding': embedding,
'importance': importance,
'stored': importance > self.importance_threshold
}
def calculate_importance(self, turn, embedding):
"""计算对话轮次的重要性"""
# 基于内容特征
content_features = self.extract_content_features(turn)
# 基于语义相似度
semantic_importance = self.calculate_semantic_importance(embedding)
# 基于时间衰减
temporal_importance = self.calculate_temporal_importance(turn)
# 综合重要性
importance = (
0.4 * content_features +
0.4 * semantic_importance +
0.2 * temporal_importance
)
return importance
def extract_content_features(self, turn):
"""提取内容特征"""
content = turn['content']
# 长度特征
length_score = min(len(content) / 100, 1.0)
# 关键词特征
keyword_score = self.calculate_keyword_score(content)
# 情感特征
sentiment_score = self.calculate_sentiment_score(content)
# 综合特征
content_score = (length_score + keyword_score + sentiment_score) / 3
return content_score
def calculate_keyword_score(self, content):
"""计算关键词分数"""
important_keywords = [
'问题', '需求', '要求', '重要', '关键', '紧急',
'问题', '需求', '要求', '重要', '关键', '紧急'
]
keyword_count = sum(1 for keyword in important_keywords if keyword in content)
return min(keyword_count / 5, 1.0)
def calculate_sentiment_score(self, content):
"""计算情感分数"""
# 这里可以使用情感分析模型
# 简化实现:基于情感词汇
positive_words = ['好', '棒', '优秀', '满意', '喜欢']
negative_words = ['坏', '差', '糟糕', '不满', '讨厌']
pos_count = sum(1 for word in positive_words if word in content)
neg_count = sum(1 for word in negative_words if word in content)
if pos_count + neg_count == 0:
return 0.5
return pos_count / (pos_count + neg_count)
def calculate_semantic_importance(self, embedding):
"""计算语义重要性"""
if not self.memory_store:
return 0.5
# 计算与现有记忆的相似度
similarities = []
for memory in self.memory_store:
similarity = cosine_similarity(
embedding.reshape(1, -1),
memory['embedding'].reshape(1, -1)
)[0][0]
similarities.append(similarity)
# 重要性 = 1 - 平均相似度(越不相似越重要)
avg_similarity = np.mean(similarities)
importance = 1 - avg_similarity
return importance
def calculate_temporal_importance(self, turn):
"""计算时间重要性"""
# 基于时间戳计算重要性
timestamp = turn.get('timestamp', '')
if not timestamp:
return 0.5
# 简化实现:基于对话顺序
turn_index = turn.get('index', 0)
total_turns = turn.get('total_turns', 1)
# 越靠后的对话越重要
temporal_importance = turn_index / total_turns
return temporal_importance
def store_in_memory(self, turn, embedding, importance):
"""存储到记忆中"""
memory_entry = {
'turn': turn,
'embedding': embedding,
'importance': importance,
'timestamp': turn.get('timestamp', ''),
'index': len(self.memory_store)
}
self.memory_store.append(memory_entry)
# 限制记忆大小
if len(self.memory_store) > 100:
# 移除最不重要的记忆
self.memory_store.sort(key=lambda x: x['importance'])
self.memory_store.pop(0)
def update_memory_network(self, embedding, importance):
"""更新记忆网络"""
if not self.memory_store:
return
# 准备输入
embeddings = np.array([memory['embedding'] for memory in self.memory_store])
importances = np.array([memory['importance'] for memory in self.memory_store])
# 转换为张量
embeddings_tensor = torch.FloatTensor(embeddings)
importances_tensor = torch.FloatTensor(importances)
# 更新记忆网络
self.memory_network.update_memory(embeddings_tensor, importances_tensor)
def retrieve_relevant_memories(self, query, top_k=5):
"""检索相关记忆"""
if not self.memory_store:
return []
# 对查询进行嵌入
query_embedding = self.embedding_model.encode(query)
# 计算相似度
similarities = []
for memory in self.memory_store:
similarity = cosine_similarity(
query_embedding.reshape(1, -1),
memory['embedding'].reshape(1, -1)
)[0][0]
similarities.append((memory, similarity))
# 排序并返回最相关的记忆
similarities.sort(key=lambda x: x[1], reverse=True)
return similarities[:top_k]
def get_context_summary(self):
"""获取上下文摘要"""
if not self.memory_store:
return "无记忆内容"
# 按重要性排序
sorted_memories = sorted(
self.memory_store,
key=lambda x: x['importance'],
reverse=True
)
# 生成摘要
summary_parts = []
for memory in sorted_memories[:10]: # 取前10个最重要的记忆
turn = memory['turn']
summary_parts.append(f"{turn['speaker']}: {turn['content']}")
return "\n".join(summary_parts)优点: 能够处理长时依赖和复杂上下文,更智能地管理和利用历史信息,理论上能达到最佳的上下文理解效果。
缺点: 实现复杂,计算资源消耗大;设计和训练记忆网络需要专业的知识和大量数据。
适用场景: 需要反复引用之前对话内容的复杂对话系统、问答系统等需要长时记忆和复杂上下文理解的场景,如多轮推理、知识图谱问答。
2.3 策略组合与优化 #
2.3.1 混合策略 #
class HybridContextProcessor:
def __init__(self):
self.truncation_processor = TruncationProcessor()
self.summarizer = DialogueSummarizer()
self.embedding_processor = EmbeddingBasedContextProcessor()
self.memory_manager = DialogueMemoryManager()
def process_context(self, dialogue_history, strategy='hybrid'):
"""混合策略处理上下文"""
if strategy == 'hybrid':
return self.hybrid_processing(dialogue_history)
elif strategy == 'truncation':
return self.truncation_processor.process(dialogue_history)
elif strategy == 'summarization':
return self.summarizer.summarize_dialogue(dialogue_history)
elif strategy == 'embedding':
return self.embedding_processor.process_dialogue_context(dialogue_history)
elif strategy == 'memory':
return self.memory_manager.process_dialogue_turn(dialogue_history[-1])
else:
raise ValueError(f"Unknown strategy: {strategy}")
def hybrid_processing(self, dialogue_history):
"""混合处理策略"""
# 1. 首先使用截断减少长度
truncated_history = self.truncation_processor.process(dialogue_history)
# 2. 对截断后的内容进行摘要
summary = self.summarizer.summarize_dialogue(truncated_history)
# 3. 生成嵌入向量
embedding_result = self.embedding_processor.process_dialogue_context(truncated_history)
# 4. 存储到记忆中
memory_result = self.memory_manager.process_dialogue_turn(truncated_history[-1])
return {
'truncated_history': truncated_history,
'summary': summary,
'embedding': embedding_result,
'memory': memory_result,
'strategy': 'hybrid'
}2.3.2 自适应策略选择 #
class AdaptiveContextProcessor:
def __init__(self):
self.processors = {
'truncation': TruncationProcessor(),
'summarization': DialogueSummarizer(),
'embedding': EmbeddingBasedContextProcessor(),
'memory': DialogueMemoryManager()
}
def select_strategy(self, dialogue_history, requirements):
"""自适应选择策略"""
# 基于对话长度
if len(dialogue_history) < 10:
return 'truncation'
elif len(dialogue_history) < 50:
return 'summarization'
elif len(dialogue_history) < 100:
return 'embedding'
else:
return 'memory'
# 基于计算资源
if requirements.get('low_compute', False):
return 'truncation'
# 基于质量要求
if requirements.get('high_quality', False):
return 'memory'
# 基于实时性要求
if requirements.get('real_time', False):
return 'truncation'
return 'hybrid'
def process_with_adaptive_strategy(self, dialogue_history, requirements):
"""使用自适应策略处理"""
strategy = self.select_strategy(dialogue_history, requirements)
processor = self.processors[strategy]
return processor.process(dialogue_history)2.4 实际应用案例 #
2.4.1 客服系统 #
class CustomerServiceContextProcessor:
def __init__(self):
self.processor = HybridContextProcessor()
self.requirements = {
'real_time': True,
'high_quality': True,
'low_compute': False
}
def handle_customer_query(self, dialogue_history, new_query):
"""处理客户查询"""
# 处理上下文
context_result = self.processor.process_context(
dialogue_history,
strategy='hybrid'
)
# 生成回复
response = self.generate_response(
new_query,
context_result
)
return response
def generate_response(self, query, context_result):
"""生成回复"""
# 使用上下文信息生成回复
# 这里可以调用LLM API
prompt = f"""
上下文摘要: {context_result['summary']}
用户查询: {query}
请基于上下文信息生成回复。
"""
# 调用LLM生成回复
response = self.call_llm(prompt)
return response2.4.2 教育对话系统 #
class EducationalDialogueProcessor:
def __init__(self):
self.processor = HybridContextProcessor()
self.knowledge_base = {}
def process_educational_dialogue(self, dialogue_history, student_query):
"""处理教育对话"""
# 提取学习主题
topics = self.extract_learning_topics(dialogue_history)
# 处理上下文
context_result = self.processor.process_context(
dialogue_history,
strategy='memory' # 教育对话需要长期记忆
)
# 生成教育回复
response = self.generate_educational_response(
student_query,
context_result,
topics
)
return response
def extract_learning_topics(self, dialogue_history):
"""提取学习主题"""
topics = set()
for turn in dialogue_history:
# 使用NLP技术提取主题
turn_topics = self.extract_topics_from_text(turn['content'])
topics.update(turn_topics)
return list(topics)
def generate_educational_response(self, query, context_result, topics):
"""生成教育回复"""
# 基于学习主题和上下文生成回复
prompt = f"""
学习主题: {', '.join(topics)}
上下文: {context_result['summary']}
学生问题: {query}
请生成教育性的回复,帮助学生理解概念。
"""
response = self.call_llm(prompt)
return response2.5 总结 #
选择哪种上下文处理策略取决于具体的应用需求、可用的计算资源以及对对话连贯性和信息保留程度的要求。在实际应用中,通常会结合多种策略,例如先进行摘要,再对摘要后的内容进行截断,或者利用记忆网络辅助滑动窗口,以达到最佳效果。
策略选择指南:
- 简单场景: 使用截断策略
- 中等复杂度: 使用摘要或嵌入策略
- 复杂场景: 使用记忆网络策略
- 混合场景: 结合多种策略
最佳实践:
- 根据对话长度动态选择策略
- 结合业务需求优化策略参数
- 持续监控和优化策略效果
- 建立完善的评估体系
通过合理选择和组合这些策略,可以构建出高效、智能的对话上下文处理系统,为用户提供更好的对话体验。